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We study condensation and evaporation of particles which repel each other. The system evolves through a
computer simulation using a simple set of rules on a square lattice. Different results are obtained for a mobile
and an immobile surface layer. A two point limit cycle is observed for high temperature and pressure in both
cases. Here the coverage oscillates between a high and a low value without ever reaching a steady state. The
results for the immobile case depend in addition on the initial coverage.
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I. INTRODUCTION

The dynamics of evaporating drops and its relation to the
geometry of the drops is a well studied problem[1,2]. Dif-
ferent characteristics of aqueous interfaces with different hy-
drophobicities using molecular dynamics have also been
studied[3,4]. Recently computer simulations on cellular au-
tomata type models[5–7] have been suggested which simu-
late the development of a surface layer under different physi-
cal conditions. A randomly occupied square lattice is taken
and particles are allowed to stick/adsorb at vacant sites or
evaporate/desorb from occupied sites according to a pre-
scribed set of rules. Appropriate probabilities for the adsorp-
tion and desorption are set according to prescribed tempera-
ture and pressure conditions. We can also introduce an
effective interaction between the particles by making the
probabilities a function of the surroundings of a site, e.g., the
number of nearest neighbors.

In the present paper we introduce an effective repulsive
interaction between particles, by allowing the adsorption
probability at an empty site to decrease with the number of
occupied nearest neighbours. The desorption probability is a
function of temperature of the substrate only. The results are
very interesting. We start with a randomly occupied square
lattice and study the evolution of a mobile layer by analytical
and numerical methods and an immobile layer by computer
simulation. In both cases we find a steady-state final cover-
age under some conditions. A two-point limit cycle showing
oscillations in the coverage is observed, when the pressure is
low while a temperature difference is maintained between
the substrate(where adsorption takes place) and the sur-
rounding vapor phase.

Standard literature on the study of surfaces involves so-
phisticated techniques, such as density functional theory and
incorporate detailed interparticle interactions. A lot of work
has been done recently along these lines[8–11]. The moti-
vation of the present work is to show that a very simple and
general model can show interesting behavior such as oscilla-
tions and hysteresis effects[5], simply by incorporating a
repulsive or attractive interaction between adsorbate par-

ticles. Oscillatory adsorption has been observed in experi-
ments by Patrylaket al. [12], so our results seem realistic.
Minko et al. [13] report oscillation in polymer adsorption
and calculations by Shioiet al. [14] show oscillations in
adsorption and desorption in situations far from thermody-
namic equilibrium. Adsorption with repulsive interaction be-
tween particles has been reported[11]. Another possibility of
having a repulsive interaction is with similarly charged par-
ticles condensing on an oppositely charged substrate. In the
next section we describe the model in detail. The results are
presented in the third section and discussion and conclusions
in the last.

II. MODEL

The process of adsorption/desorption is described tradi-
tionally by two different sets of models—one for a mobile
adsorption layer and one for an immobile layer[15,16]. The
probabilities for adsorption and desorption on a two-
dimensional monolayer are specified according to the phys-
ics behind the model. These are functions of the temperature
of the substrate, pressure, and the existing coverage. At equi-
librium, the adsorption and desorption probabilities are set
equal and the resulting equation is solved to get the equilib-
rium coverage at that temperature and pressure.

The simplest mobile layer model is a two-dimensional
ideal gas, and the improved versions include interaction be-
tween particles, similar to a two-dimensional van der Waals
gas. The so-called immobile layer models introduce an ad-
sorption probability, depending on how long a molecule in
the vapor above the surface is in contact with a surface site.
The simplest “immobile model” is the Langmuir equation
derived as follows.

For vapor adsorption the particle flux, i.e., the number of
particles deposited per unit time per unit surface areasNd is
given by

N =
P

Î2pmkT
=

Pl

h
, s1d

whereP is the pressure,*Email address: sujata@juphys.ernet.in
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l = Îh2/s2pmkTd

is de Broglie length,h is Planck’s constant,m is the mass of
a particle,k is Boltzmann’s constant,T is the absolute tem-
perature.

The probability of adsorption per unit time is obtained by
dividing N by the total number of sites available for adsorp-
tion, and the same may be done for the desorption probabil-
ity. The flux of desorption from a saturated surface may be
approximated by[17]

d =
kT

hl2 exps− Ee/kTd, s2d

whereEe is activation energy for desorption. The prefactor to
the exponential term is a function of the attempt frequency,
i.e., the frequency of vibration of a particle in a local poten-
tial minimum(adsorption site) on the surface, hence it can be
written in terms of the de Broglie wavelengthl. Denoting
the fraction of occupied sites(i.e., the coverage) by c, ad-
sorption probability is set equal to desorption probability,
giving the equilibrium condition

Pl3

kT
s1 − cd = exps− Ee/kTdc, s3d

and we have the simple Langmuir equation

Pb=
c

1 − c
, s4d

where

b =
l3

kT
expsEe/kTd.

In this approximation it is assumed that desorption energy
is the same for all configurations.

In the present work we introduce a repulsive interaction
between particles, as follows—adsorbing particles are less
likely to stick at sites surrounded by more neighbors. This
mimics a situation where the adsorbing particle has to over-
come the potential barrier due to the repelling neighbors to
reach a vacant site on the substrate. We assume that the sub-
strate attracts the adsorbing particle.

We define a probability for adsorption on a vacant sitefc
determined by the pressureP as

fc = P/Ps = P * , s5d

where Ps is a saturation pressure and 0, fc,1. P* is the
reduced pressure defined byP/Ps. The adsorption probabil-
ity at a vacant site withn occupied neighbors is proportional
to fc

n. We have

Pads= s1 − cd5 + 4s1 − cd4cfc + 6s1 − cd3c2fc
2

+ 4s1 − cd2c3fc
3 + s1 − cdc4fc

4

= s1 − cdscfc + 1 −cd4. s6d

The successive terms in the central expression above repre-
sent the probability of a vacant site having, respectively, 4, 3,
2, 1 and 0 vacant near neighbor sites.

The desorption probability is assumed to be a function of
T, the temperature of the substrate, and, of course,c, but is
assumed independent of the occupancy of neighboring sites.
The temperature of the substrate is different from the tem-
perature of the gas phase, which is determined by the pres-
sure and the constant volume of the system. So our system is
an “open” system with a constant inflow of energy, to main-
tain the steady temperature difference.

Pdesorb= cskT/Psl
3dexps− Ee/kTd. s7d

Ps is temperature dependent, and this must be taken into
account. But we can approximate it by the simple relation
that follows from the equilibrium relation on the surface of
the fluid:

Ps =
kT

l3 exps− Evap/kTd, s8d

where Evap is the enthalpy of vaporization of a fluid that
supports vapor.

In this formulation the simplest adsorption desorption
equilibrium condition is obtained by equatingPads and
Pdesorb,

s1 − cdscfc + 1 −cd4 =
kT

Psl
3 exps− Ee/kTdc = exps− DE/kTdc,

s9d

whereDE=Ee−Evap. Here too the adsorption probabilityfc
is given by Eq.(5) and the desorption probability is

fe = exps− DE/kTd. s10d

The adsorption probability is a function of the reduced pres-
sureP* only. That means that the molecules desorb from the
surface with a probability 1 whenEe=Evap, i.e., when the
energy of desorption from the surfaceEe equals the energy of
desorptionEvap from the surface of a liquid that supports the
vapor.

So, we can rewrite the probability for an adsorbed particle
desorbingsPdesorbd as

Pdesorb= cfe = c exps− 1/T * d, s11d

whereT* = kT/DE.
Our model is complementary to the Fowler-Guggenheim

model[15,16], where the adsorption probability is dependent
only on pressure, but the desorption probability decreases
with the number of occupied near neighbors. The neighbors
are assumed to attract the particle and create a barrier to
desorption. This type of interaction was incorporated in
Dutta et al. [5].

Now we study the behavior of this system for different
values of the temperature and pressure parameters. We look
at the two different situations where the surface layer is ei-
ther mobile or immobile.

A. Mobile surface layer

Let us suppose that the energy barrier for motion of the
adsorbed particles along the surface is very low so a continu-
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ous rearrangement is going on. In this case the distribution of
particles always becomes random and the probabilities in Eq.
(6) are always valid. So one can equate the adsorption and
desorption probabilities in the steady state and solve for the
coveragec. We confine ourselves to ranges ofT* and P*,
which give adsorption and desorption probabilities in the
range 0–1. The results are shown in the next section. We may
also see how the coverage evolves using the following itera-
tive procedure:

cf = ci + Pads− Pdesorb s12d

and

ci = cf , s13d

whereci is the initial coverage andcf the final. If there is a
steady-state solution the final coveragecf converges to a
steady value. We find, however, that for some combinations
of the pressure and temperature parameters, the coverage
converges to a stable limit cycle, oscillating between two
positive and realistic values. The solution forc in Eq. (9)
now becomes an unstable fixed point. This is very interesting
and reminiscent of the discovery of oscillatory behavior in
real chemical systems[18–20]. Such oscillations are ob-
served in far from equilibrium situations, in open systems,
where a feedback loop is present, as constituted by Eq.(12)
and (13).

The results obtained here can be verified from a computer
simulation on a finite system. This was done as follows. We
assume that a gas occupies the space above a square lattice.
The gas molecules can adsorb or desorb from sites on this
lattice with a probability that is determined by its pressure
and the configuration of the nearest neighbor sites at a given
point. The square lattice is initially randomly filled with par-
ticles with a probabilityc, and in the following step new
particles are adsorbed or existing particles desorbed accord-
ing to the prescribed rules. This can be done either sequen-
tially or parallelly. By “sequential” we mean that sites are
scanned one after the other, and the adsorption or desorption
is implemented for each site right away. “Parallel” means
that the sites are scanned, and the required changes to be
made are noted, without execution. Finally, after all sites are
scanned, the neccessary changes are implemented simulta-
neously for all sites. The results may not agree in the two
cases. We choose the parallel updating algorithm for the
present study, as it is closer to reality in this case.

In the mobile case, the adsorbed molecules can move lat-
erally on the surface. The physical situation simulated is de-
scribed by Eq.(6). A two-dimensional square lattice of unit
spacing and size 3003300 is occupied randomly with an
initial coveragecinitial. Every occupied site is assigned the
value 1, and empty sites are assigned the value 0. The occu-
pied sites then desorb with a probability[according to Eq.
(11)] which is the same for each occupied site,

fe = exps− 1/T * d.

For very largeT* the desorption probability approaches 1.
The vacant sites are filled with a probability dependent on
the number of occupied near neighbor sitesn as fc

n. After one
round of adsorption and desorption is complete, the concen-

tration of the occupied sitescfinal is calculated. Periodic
boundary conditions are used here.

In the next time step, thecfinal of the previous time step
becomes the newcinitial. The square lattice is then randomly
occupied afresh with thiscinitial. A complete time step begins
with the random occupation of all sites with acinitial and ends
with the assignment ofcfinal to the cinitial of the next time
step. This constitutes a feedback loop, similar to what is
found in chemical systems showing oscillation. This iterative
process stops whencfinal saturates with increasing time to a
definite value. In the simulation, we checked up to 50 000
time steps. The “mobility” of the molecules is simulated by
the randomization of the concentrationcinitial in the begin-
ning of every time step.

B. Immobile surface layer

If we consider the energy barrier to surface movement of
the particles to be large enough, the arguments presented in
the last subsection are not valid. We start with a certain con-
centration of particles randomly distributed on a square lat-
tice and allow absorption and desorption according to our
rules. But after one time step the distribution is no longer
random, so we cannot find out the number of new adsorbed
or desorbed sites as in Eq.(6). We can, however, simulate the
system as above without the randomization procedure fol-
lowing each round of adsorption and desorption. This mim-
ics the development of a surface layer where the particles are
not free to move laterally on the surface. The results in this
case are quite different.

III. RESULTS

We present the results for the mobile and immobile layer
case. The mobile layer results are done analytically or by
numerical iteration and verified by computer simulation. The
immobile layer results are done by computer simulation as
an analytical solution cannot be obtained here.

A. Results for the mobile layer

Figure 1(a) shows the bifurcation of the stable fixed point.
The final coverage is plotted against exps−1/T* d for differ-
ent pressuresP* =0.0, 0.3, 0.6, and 0.9. The isobars have
one steady-state solution up to a temperatureT*

b. At T*
b the

steady-state solution becomes unstable and two new solu-
tions appear. This is the bifurcation point. AboveT*

b the
system oscillates between these two states with different cov-
erage. This can be demonstrated by substituting any of these
coverages asci in Eqs.(12) and(13). Figure 1(b) shows how
the temperature and coverage at the bifurcation pointT*

b and
cb vary with reduced pressureP*. Above the bifurcation
point, the system converges to a steady oscillation between
the two solutions, from any starting point. Figures 2(a) and
2(b) show the typical cluster formations just at the bifurca-
tion point for P* =0.001 andT*

b=0.92. This is a typical
two-point limit cycle. These results are independent of the
initial coverage.

For T* very large andP* =1 there is an oscillation be-
tweencinitial and 1−cinitial, as is also evident from Eq.(6).
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HereT* always refers to the substrate temperature.
Systems governed by nonlinear equations do often exhibit

such behavior[18], but we have not come across such a case
in the adsorption problem, except the work of Patrylaket al.
[12] where no explanation for the oscillation is offered. The
results were checked for finite size effects on a 5003500
square lattice. The saturation values of coverage at different
temperatures and pressure remained unchanged.

B. Results for the immobile surface layer

The immobile situation can be studied only by computer
simulation. Starting with an initial random distribution of
particles, the system is allowed to evolve and the final cov-

erage for differentP* and T* is studied. In this case as there
is no randomization, the system takes a very long time to
reach the steady state, and we have observed up to 30 000
time steps. Steady state solutions ofcfinal are obtained for
T* ,1, i.e., Pdesorb,1. In the computer simulation for the
immobile case, we find it convenient to use an effective tem-
peratureTsim which takes values from 0 to 1 only. The de-
sorption probability should be maximum, i.e., 1 atTsim=1.
So we defineTsim as

Pdesorb= eexps− Tsimd = exps1/T * d. s14d

Figure 3 shows the coverage plotted against exps−1/Tsimd,
i.e., feexps−1/T* dg. Oscillations are obtained forT* =1. No
bifurcation is seen in Fig. 3 where the range forT* is from 0
to 0.9. We have checked forT* values up to 0.99 and have
obtained no bifurcation. The steady state isobars and iso-
therms are shown in Figs. 3 and 4, respectively. In both these

FIG. 1. (a) Isobars for the final coverage for the mobile layer. At
T*

b, the steady solution forcb shows the bifurcation to a limit cycle.
(b) Variation of T*

b and cb with P*. Please refer to the text Sec.
III A for a detailed discussion.

FIG. 2. (a) Typical cluster formation atP* =0.001 andT*
b

=0.92, corresponding to the lower fixed coveragec=0.144 of the
two-point limit cycle. (b) Typical cluster formation atP* =0.001
andT*

b=0.92, corresponding to the upper fixed coveragec=0.491
of the two-point limit cycle.
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figures values ofT* only up to 0.9 are shown to avoid clut-
tering.

At Pdesorb=1.0, oscillations between a two-point limit sets
in for all valuesP*. For P* ø0.7, the limit points of the
two-point cycle are 0 and 1. AsP* increases to 0.9, the
extremities of the limit cycle converge slightly to the values
0.11 and 0.89. However, for everyP*, there is a certain
initial coverageca that yields a final coverage oscillating in a
narrower confine between 0.4 and 0.5 for allP*. Even a
departure of 0.05 fromca, shifts the final coverage to the
fixed point limits of the wider limit cycle. However, the rate
of convergence tocfinal from differentcinitialS other thanca,
is slower for higher values ofP*. The ca increases slowly
with P* as displayed in Table I. Here too the results were
checked for finite size effects. The limits for the oscillating
coverage remained unchanged for the different combinations
of pressure and temperature.

IV. DISCUSSION

We have demonstrated that the adsorption/desorption
problem developed on a square lattice shows very interesting
possibilities. The treatment here is similar to modifications of
the percolation problem as in Mannaet al. [6]. An initial
random distribution of particles is allowed to evolve accord-
ing to a prescribed set of rules. However, in the present work
we are interested in how the coverage develops, as a function
of time, rather than the percolation properties of the adsorbed
layer.

Our approach differs from the usual treatment of the
adsorption/desorption problem in chemical physics[15] in
that we specify explicitly whether the adsorbed layer is mo-
bile or immobile. From our point of view equating the ad-
sorption and desorption probabilities to find the steady state
coverage is valid only when the particles can rearrange very
fast to preserve the random distribution. We demonstrate that
making the particles truly immobile on the two-dimensional
surface gives a quite different final coverage, which is also
dependent on the initial coverage. This was discussed in the
previous work[5] with an attractive interaction between par-
ticles. Careful experiments are needed to test the justification
of these arguments. In our earlier work[5] we started with a
randomly occupied square lattice and let particles desorb
with a probability which decreased with the number of oc-
cupied neighboring sites. This amounted to an attractive in-
teraction between the particles. The adsorption was a func-
tion of the pressure only. The most striking result of the
present work is the observation of oscillations in the
adsorption/desorption problem, using such an extremely
simple model, without taking any details of the system into
account.

Earlier well known works on nonlinear mathematical
equations[18] show the appearance of bifurcations with re-
peated period doubling sometimes leading to chaos. Such
situations are found in real life in problems of physics, chem-
istry, and biology. A nonequilibrium situation arising from a
steadily maintained temperature difference leads to Benard
convection[18]. Chemical systems are known to exhibit os-
cillations in concentration of reactants and products in
chemical reactions under nonequilibrium conditions[19,20].
There is also some study of such a phenomenon in
adsorption/desorption problems[12,10]. Experiments with
repelling particles adsorbing on a substrate are reported in
Ref. [11], but in this experiment two different types of par-
ticles are involved.

So in conclusion the simple stochastic model with adsorp-
tion and desorption on a square lattice gives rise to a host of
interesting phenomena. With an attractive interaction be-
tween particles phase transitions and hysteresis was observed
[5], while a repulsive interaction gives oscillations in cover-
age under certain conditions.

FIG. 3. Isobars for the immobile case showing variation of cov-
erage with 2.718 exps−1/T* d. The values ofP* for each curve are
shown in the figure. Stablec are obtained for 2.718 exps−1/T* d up
to 0.9, for 2.718 exps−1/T* d=1.0 oscillations are obtained.

FIG. 4. Isotherms for the immobile case showing variation of
coverage with pressureP*. Stable c are obtained for 2.718
3exps−1/T* d up to 0.9, for 2.718 exps−1/T* d=1.0 oscillations are
obtained.

TABLE I. The variation ofca with P*.

P* 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9

ca 0.23 0.25 0.265 0.305 0.33 0.35 0.39 0.43
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